Skip to main content
Log in

Comparative approach for detection of biosurfactant-producing bacteria isolated from Ahvaz petroleum excavation areas in south of Iran

  • Methods
  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The current study was undertaken to compare four analytical methods including drop collapse, oil spreading, surface tension (SFT) measurements, and blood agar lysis tests for detection of biosurfactant-producing bacteria. Among 32 biosurfactant-producing bacteria isolated from Ahvaz oil fields, in south of Iran, 16 isolates (50%) exhibited highest biosurfactant production. Eleven isolates (MASH.1 to MASH.11) demonstrated a reduction in surface tension from 65 mN/m to less than 41 mN/m. The results showed that about 91% of these highly biosurfactant producers had the same response levels of “++++” and “+++” in the case of both SFT and oil spreading methods. Among these, seven isolates had the haemolysis diameter less than 1 cm or between 1 and 2 cm on blood agar. As 64% of the best biosurfactant producers did not completely lyses blood, the ability of biosurfactant-producers for haemolysis may not always be trustworthy. According to our data, there is a good consistency between oil spreading technique and surface tension. As a conclusion, oil spreading method is the fastest, simplest and most consistent analytical method to be suggested for accurate measurements of biosurfactant producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Banat I.M. (1993) The isolation of a thermophilic biosurfactant-producingBacillus species. Biotechnol Lett., 15: 591–594.

    Article  CAS  Google Scholar 

  • Banat I.M. (1995). Biosurfactants production possible uses in microbial enhanced oil recovery and oil pollution remediation: A Review. Bioresource Technol., 51: 1–12.

    Article  CAS  Google Scholar 

  • Benincasa M., Abalos A., Oliveira I., Manresa A. (2004). Chemical structure, surface properties and biological activities of the biosurfactant produced byPseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek, 85: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bodour A.A., Miller-Maier R.M. (1998). Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods, 32: 273–280.

    Article  CAS  Google Scholar 

  • Carrillo P.G., Mardaraz C., Pitta-Alvarez S.J., Giulietti A.M. (1996). Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol., 12: 82–84.

    Article  Google Scholar 

  • Christofi N., Ivshina I.B. (2002). Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol., 93: 915–929.

    Article  CAS  PubMed  Google Scholar 

  • Das M., Das S.K., Mukherjee R.K. (1998). Surface active properties of the culture filtrates of aMicrococcus species grown onn-alkenes and sugars. Biores. Technol., 63: 231–235.

    Article  CAS  Google Scholar 

  • Das K., Mukherjee A.K. (2005). Characterization of biochemical properties and biological activities of biosurfactants produced byPseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl. Microbiol. Biotechnol., 69: 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Desai J.D., Banat I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev., 61: 47–64.

    CAS  PubMed  Google Scholar 

  • Francy D.S., Thomas J.M., Raymond R.L., Ward C.H. (1991). Emulsification of hydrocarbon by surface bacteria. J. Ind. Microbiol., 8: 237–246.

    Article  CAS  Google Scholar 

  • Gautam K.K., Tyagi V.K. (2006). Microbial surfactants: A Review. J. Oleo Sci., 55: 4155–166.

    Google Scholar 

  • Haba E.M., Espuny J., Busquets M., Manresa A. (2000). Screening and production of rhamnolipids byPseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol., 88: 379–387.

    Article  CAS  PubMed  Google Scholar 

  • Harkins W.D., Alexander A.E. (1959). Determination of surface and interfacial tension. In: Physical Methods of Organic Chemistry 1. pp. 757–814, Interscience Publishers, Sydney.

    Google Scholar 

  • Javaheri M., Jenneman G. E., McInerney M.J., Knapp R.M. (1985). Anaerobic production of a biosurfactant byBacillus licheniformis JF-2. Appl. Environ. Microbiol., 50: 698–700.

    PubMed  Google Scholar 

  • Kosaric N. (1992). Biosurfactants in industry. Pure Appl. Chem., 64: 1731–1737.

    Article  CAS  Google Scholar 

  • Maier R.M., Soberón-Chávez G. (2000).Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 54: 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Makkar R.S., Cameotra S.S. (1997). Biosurfactant production by a thermophilicBacillus subtilis strain. J. Ind. Microbiol. Biotechnol., 18: 37–42.

    Article  CAS  Google Scholar 

  • Makkar R.S., Cameotra S.S. (1998). Biosurfactant production at mesophilic and thermophilic conditions by a strain ofBacillus subtilis. J. Ind. Microbiol. Biotechnol., 20: 48–52.

    Article  CAS  Google Scholar 

  • McInerney M.J., Javaheri M., Nagle D.N. (1990). Properties of the biosurfactant produced byBacillus licheniformis JF-2. J. Ind. Microbiol., 5: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Menezes Bento F., de Oliveira Camargo F.A., Okeke B.C., Frankenberger Jr W.T. (2005). Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol. Res., 160: 249–55.

    Article  PubMed  Google Scholar 

  • Morikawa M., Hirata Y., Imanaka T. (2000). A study on the structure function relationship of the lipopetide biosurfactants. Biochim. Biophys. Acta, 1488: 211–218.

    CAS  PubMed  Google Scholar 

  • Mulligan C.N., Cooper D.G., Neufeld R.J. (1984). Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol., 62: 311–314.

    CAS  Google Scholar 

  • Mukherjee S., Das P., Sen R. (2006). Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarboncontaminated and bioremediated soils. J. Petroleum Science and Engineering, 50: 71–77.

    Article  Google Scholar 

  • Ron E.Z., Rosenberg E. (2002). Biosurfactants and oil bioremediation. Environ. Biotechnol., 13: 249–252.

    CAS  Google Scholar 

  • Singh P., Cameotra S.S. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol., 22: 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Van Dyke M.I., Gulley S.L., Lee H., Trevors J.T. (1993). Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J. Ind. Microbiol., 11: 163–170.

    Article  Google Scholar 

  • Wolin E., Wolin M., Wolf R. (1963). Formation of methane by bacterial extracts. J. Biol. Chem., 238: 2882–2886.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Akbari Noghabi.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afshar, S., Lotfabad, T.B., Roostaazad, R. et al. Comparative approach for detection of biosurfactant-producing bacteria isolated from Ahvaz petroleum excavation areas in south of Iran. Ann. Microbiol. 58, 555–559 (2008). https://doi.org/10.1007/BF03175557

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175557

Key words

Navigation